Oxidation of Aromatic Compounds: XIII.* Oxidation of Unsymmetrically Substituted 1,3-Diarylpropynones in a System $\mathrm{CF}_{3} \mathrm{CO}_{\mathbf{2}} \mathbf{H}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PbO}_{2}$

A.V. Vasil'ev ${ }^{1}$, A.P. Rudenko ${ }^{1}$, S.A.Aristov ${ }^{1}$, and G.K. Fukin ${ }^{2}$
${ }^{1}$ St. Petersburg StateAcademy of Forestry Engineering, St. Petersburg, 194021Russia e-mail: aleksvasil@hotmail.com
${ }^{2}$ Razuvaev Institute of Organometallic Chemistry, Russian Academy of Science, Nizhnii Novgorod, Russia

Received November 12, 2004

Abstract

Oxidation of unsymmetrically sunstituted 1,3-diarylpropynones in a system trifluoroacetic acid-dichloromethane-lead(IV) oxide proceeds through intermediate formation of cation radicals and occurs regio- and stereoselectively affording E-1,1,2,2-tetraaroylethenes. The highest yield of these compounds was obtained from 1,3-diarylpropynones containing electron-donor methoxy and methyl groups in the aromatic ring conjugated with the triple bond.

Alkynes are extensively used for preparation of versatile carbonyl synthons [2]. One-electron oxidation reactions of acetylene compounds open a way to new classes of synthetically valuable polycarbonyl systems [1, 3-6].

This study is carried out in extension of an investigation series on cation-radical reactions of alkynes and deals with the regio- and stereoslectivity of carbon-carbon bonds formation at oxidative dimerization of unsymmetrically substituted 1,3-diarylpropynones Ia-Ik.

Scheme 1 shows initial 1,3-diarylpropynones Ia-Ik that are oxidized via an intermediate formation of cationradicals IIa-IIk to the final reaction products, $E-1,1,2,2-$ tetraaroylethenes IIIa-IIIg (see the table).

The structure and composition of compounds IIIaIIIg were established from the data of elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectra, and from the X-ray diffraction study. The exact trans-position of aroyl groups at the $\mathrm{C}=\mathrm{C}$ bond was determined by X-ray diffraction analysis by an example of compound IIIc (Fig. 1). The

Oxidation conditions of 1,3-diarylpropynones $\mathbf{I a}-\mathbf{I j}$ in a system $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{PbO}_{2}$ at $18-20^{\circ} \mathrm{C}$, and yields of oxidation products IIIa-IIIg

Run no.	Compd.no.	Amount of reagents brought into reaction				Reaction time, h	Reaction products (yield, \%)
		I, mmol	$\mathrm{PbO}_{2}, \mathrm{mmol}$	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{ml}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{ml}$		
1	Ia	1.5	1.5	0.6	2	5	IIIa (48)
2	Ib	1.7	1.7	0.5	3	3	IIII (52)
3	Ic	2.0	2.0	0.8	5	2	IIIC (31)
4	Id	0.6	0.6	0.2	2	2	IIId (6)
5	Ie	1.3	1.3	0.5	4	1	IIIe(62)
6	If	0.4	0.4	0.2	2	6	IIIf (38)
7	Ig	0.7	0.7	0.4	5	2	IIIg (56)
8	Ih	2.0	2.0	0.8	3	20	IIIa (8)
9	Ii	1.7	1.7	0.7	3	20	IIIe (8)
10	Ij	1.0	1.0	0.4	5	2	Ij (80)

[^0]Scheme 1.

trans-structure of tetraaroylethenes IIIa-IIIg was additionally proved by their chemical reaction with hydrazine (see below).

The performed preparative oxidation of 1,3-diarylpropynones Ia-Ij revealed the following regular trends in the reaction. Substarates Ia-Ic, Ie-Ig containing electron-donor methoxy and methyl groups in the aromatic ring conjugated with the triple bond are cleanly converted into IIIa-IIIc, IIIe-IIIg within $1-6 \mathrm{~h}$ in $31-62 \%$ yields (see the table). An increased number of alkyl groups results in a lower yield of the final oxidation products, for instance, in the case of tetramethyl derivative Id the yield decreases to 6% (cf. runs nos. l-O). The reason is that alkyl groups suffer oxidation by side reactions furnishing tarry compounds and thus reducing the yield of the target tetraaroylethenes.

The oxidation of diarylpropynone \mathbf{I} that are isomeric having the same substituents $\mathrm{R},\left(\mathrm{R}^{\prime}\right)$ in $o-, m$-, or p-position but in different aromatic rings results in tetraaroylethenes III with identical structures. Thus isomers Ia and Ih afford the same tetraketone IIIa (runs nos. l and
8). Analogous-ly, the oxidation of isomeric methoxysubstituted deriva-tives Ie and Ii furnished compound IIIe (runs nos. 5 and 9). It should be mentioned that aryl-3-phenylpropinones $\mathbf{I h}$ and Ii not activated by electron-donor substituents R' require a prolonged oxidation time (20 h) and afford oxidation products IIIa and IIIe in a small yield, 8% (runs nos. 8 and 9) at conversion of the initial compound reaching only 30%.

The formation of cation-radicals II from diarylpropynones I was registered at one-electron oxidation of compounds $\mathbf{I c}, \mathbf{I j}$, and $\mathbf{I k}$ with lead(IV) dioxide in $\mathrm{HSO}_{3} \mathrm{~F}$ at $-75^{\circ} \mathrm{C}$. Substrates $\mathbf{I c}, \mathbf{I j}$, and $\mathbf{I k}$ in $\mathrm{HSO}_{3} \mathrm{~F}$ at $-75^{\circ} \mathrm{C}$ exist as stable forms O-protonated at the carbonyl group [7]. However the one-electron oxidation in the system $\mathrm{HSO}_{3} \mathrm{~F}-\mathrm{PbO}_{2}$ undergo nonprotonated compounds present in insignificant concentration (cf. with data in [8, 9] on the ESR studies and electrochemistry of cataionradicals of acetophenones in superacids).

The ESR spectrum of cation-radical IIj contains thirteen equidistant lines with a hyperfine coupling constant $a_{\mathrm{Me}}^{\mathrm{H}} 11.5 \mathrm{Gs}(12 \mathrm{H})$. This pattern is due to the interaction

Fig. 1. Molecular structure of E-1,2-bis(2,4,6-trimethyl-phenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIIc).
of the unpaired electron with twelve protons of the four methyl groups (g-factor is equal to 2.0033). The character of the spectrum evidences the presence in the cation radical IIj of a singly occupied molecular orbital (SOMO) a_{2} (previous HOMO of the neutral molecule [10]). Therewith the methyl substituents are considerably involved in the distribution of the spin-positive density. As a result the oxidation of compound $\mathbf{I j}$ did not furnish the corresponding tetraaroylethene. In the reaction the equimolar amount of PbO_{2} was totally consumed, and beside a small quantity of oily oligomeric products initial compound Ij was recovered in an 80% yield (run no. 10). The reaction proceeded through the oxidation of "active" methyl groups not involving the acetylene moieties of the molecule.

ESR spectra of cation-radicals IIc and IIk are shown on Fig. 2. The ESR spectrum of cation-radical IIc is a quartet of nonets with constants $a_{i-\mathrm{Me}} 12(3 \mathrm{H})$ and $a_{O-\mathrm{Me}}^{\mathrm{H}}=a_{m \text {-arom }}^{\mathrm{H}} 2.4 \mathrm{Gs}(8 \mathrm{H})$ (Fig. 2a) and corresponds to SOMO b_{1}. The spin-positive density in the cation-radical IIc is essentially delocalized onto the para-methyl group (the principal quartet splitting in the spectrum) and on the triple bond $\mathrm{C} \equiv \mathrm{C}$ governing the reactivity of the latter. Actually, the oxidation of compound Ic results in formation of tetraketone IIIc in a 31% yield (run no.3) in contrast to the above mentioned substrate $\mathbf{I} \mathbf{j}$.

The comparison of the ESR spectrum of cation-radical IIc with ESR spectra of cation-radicals of the structurally related mesityene derivatives containing an electronacceptor group in the aromatic ring [8] reveales the transformation of SOMO a_{2} (characteristic of the latter) into SOMO b_{1} for the species IIc. In cation-radical IIc the involvement of the acetylene bond into the delocalization of the spin-positive density becomes favorable even disregarding the electron-acceptor character of the $\mathrm{C} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Ph}$ group.

ESR spectrum of cation-radical IIk is a quintet (intensity ratio of the lines equals to $1: 4: 6: 4: 1$) with a hyperfine coupling constant $a_{\mathrm{MeO}}^{\mathrm{H}}=a_{m \text {-arom }}^{\mathrm{H}} 4.5 \mathrm{Gs}(4 \mathrm{H})$ (g-factor 2.0037) and also corresponds to SOMO b_{1} for this species (Fig. 2b).

The reaction of tetraaroylethenes IIIa and IIIe with hydrazine gave rise to heterocyclic derivatives of pyridazine IV and 2,3,6,7-tetraazanaphthalene Va and Ve series (Scheme 2). The synthesis of pyridazine IV is possible only from trans-compound IIIe. In the case of a cis-isomer Z-IIIe presumably should have formed two different isomeric pyridazines that was not the case. Therefore the data on the structure of the products obtained in reaction of compounds IIIa and IIIe with

Fig. 2. ESR spectra of cation-radicals IIc (a) and IIk (b) registered at oxidation of compounds $\mathbf{I c}$ and $\mathbf{I k}$ in the system $\mathrm{HSO}_{3} \mathrm{~F}$ PbO_{2} at $-75^{\circ} \mathrm{C}$.
hydrazine additionally confirm the trans-configuration of tetraketones IIIa-IIIg.

EXPERIMENTAL

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were registered on spectrometer Bruker AM-500 (operating frequencies

Scheme 1.

$500,125.76$, and 470.7 MHz respectively) from solutions in CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$. As internal references were used the residual signals of $\mathrm{CHCl}_{3}(\delta 7.25 \mathrm{ppm})$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(\delta 2.05 \mathrm{ppm})$ in the ${ }^{1} \mathrm{H}$ NMR spectra, signal of CDCl_{3} solvent ($\delta 77.0 \mathrm{ppm}$) in the ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra}$, and signal of $\mathrm{CFCl}_{3}(\delta 0.0 \mathrm{ppm})$ in the ${ }^{19} \mathrm{FNMR}$ spectrum. IR spectra were recorded on spectrophotometer Specord 75IR from solutions in CHCl_{3}. Molecular weights were determined by mass spectrometry on MKh-1321 instrument at ionizing voltage 70 V at direct admission of samples into the ion source heated to $100-120^{\circ} \mathrm{C}$. ESR spectra of cation-radicals were measured on spectrometer Varian E-109; the procedure of cationradicals generation and registering their ESR spectra in the system $\mathrm{HSO}_{3} \mathrm{~F}-\mathrm{PbO}_{2}$ was described in detail in [8]; the g-factor value was estimated with respect to diphenylpicrylhydrazyl. The X-ray diffraction study of compound IIIc was performed on a diffractometer Smart Apex.

Initial 1,3-diarylpropynones Ia-Ij were prepared from the corresponding arylacetylenes and aroyl chlorides by procedure [4]. The properties of compounds $\mathbf{I a}, \mathbf{I c}, \mathbf{I e}$, $\mathbf{I j}$, and $\mathbf{I k}$ were published in [7].

3-(3,4-Dimethylphenyl)-1-phenylpropynone (Ib). Yield 30%, mp $77-79^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1630,1635$ $(\mathrm{C}=\mathrm{O}), 2200(\mathrm{C} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta$, ppm: $2.31 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.33 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.27 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 7.7 \mathrm{~Hz}), 7.48-7.74 \mathrm{~m}\left(5 \mathrm{H}_{\text {arom }}\right), 8.22-8.24 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 87.24; H 5.93. M^{+}234. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}$. Calculated, \%: С 87.15; H 6.02. M 234.10.

3-(2,3,5,6-Tetramethylphenyl)-1-phenylpropynone (Id). Yield 35%, mp $108-110^{\circ} \mathrm{C}$. IR spectrum, v, $\mathrm{cm}^{-1}: 1620(\mathrm{C}=\mathrm{O}), 2190(\mathrm{C} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta$, ppm: $2.24 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me}), 2.47 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me})$, $7.10 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.62 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.73 \mathrm{t}\left(1 \mathrm{H}_{\text {arom }}\right.$, $J 7.5 \mathrm{~Hz}), 8.24 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right)$. Found, $\%: \mathrm{C} 87.05$; H 6.98. M^{+}262. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$. Calculated, \%: C 86.99; H 6.92. M 262.14.

3-(4-Methylphenyl)-1-(4-fluorophenyl)propynone (If). Yield $46 \%, \mathrm{mp} 95-97^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1625(\mathrm{C}=\mathrm{O}), 2195(\mathrm{C} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta, \mathrm{ppm}: 2.41 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.34-7.38 \mathrm{~m}$ $\left(4 \mathrm{H}_{\text {arom }}\right), 7.68 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 7.9 \mathrm{~Hz}\right), 8.28-8.32 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 80.41; H 4.79. $M^{+} 238 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FO}$. Calculated, \%: C 80.66; H 4.65. M 238.08.

3-(4-Methoxyphenyl)-1-(4-nitrophenyl)propynone (Ig). Yield 34%, mp $196-198^{\circ} \mathrm{C}$. IR spectrum, v, $\mathrm{cm}^{-1}: 1650(\mathrm{C}=\mathrm{O}), 2190(\mathrm{C} \equiv \mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $3.87 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}), 6.96 \mathrm{~d}$
$\left(2 \mathrm{H}_{\text {arom }}, J 8.6 \mathrm{~Hz}\right), 7.66 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.6 \mathrm{~Hz}\right), 8.36 \mathrm{~s}$ $\left(4 \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 67.93; H 4.11; N 5.08. $M^{+} 281$. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{4}$. Calculated, \%: C 68.32; H 3.94; N 4.98. M281.07.

1-(4-Methylphenyl)-3-phenylpropynone (Ih). Yield $56 \%, \mathrm{mp} 68-69^{\circ} \mathrm{C}$ (publ.: $\mathrm{mp} 67-68^{\circ} \mathrm{C}$ [11]). IR spectrum, $v, \mathrm{~cm}^{-1}: 1625(\mathrm{C}=\mathrm{O}), 2195(\mathrm{C} \equiv \mathrm{C})$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta, \mathrm{ppm}: 2.44 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.41 \mathrm{~d}$ $\left(2 \mathrm{H}_{\text {arom }}, J 8.0 \mathrm{~Hz}\right), 7.50-7.60 \mathrm{~m}\left(3 \mathrm{H}_{\text {arom }}\right), 7.76-7.78 \mathrm{~m}$ $\left(2 \mathrm{H}_{\text {arom }}\right), 8.13 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.0 \mathrm{~Hz}\right)$.

1-(4-Methoxyphenyl)-3-phenylpropynone (Ii). Yield $58 \%, \operatorname{mp} 97-99^{\circ} \mathrm{C}$ (publ.: mp 98-99 [11], $100^{\circ} \mathrm{C}$ [12]). IR spectrum, $v, \mathrm{~cm}^{-1}: 1610(\mathrm{C}=\mathrm{O})$, $2200(\mathrm{C} \equiv \mathrm{C})$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta, \mathrm{ppm}: 3.93 \mathrm{~s}(3 \mathrm{H}$, $\mathrm{OM} \mathrm{\varepsilon}), 7.11 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.9 \mathrm{~Hz}\right), 7.50-7.60 \mathrm{~m}\left(3 \mathrm{H}_{\text {arom }}\right)$, $7.75-7.86 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right), 8.21 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.9 \mathrm{~Hz}\right)$.

Oxidation of 1,3-diarylpropynones Ia-Ij into 1,1,2,2-tetraaroylethenes IIIa-IIIg. To a solution of $0.2-0.8 \mathrm{ml}$ of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $2-5 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $18-20^{\circ} \mathrm{C}$ while vigorous stirring $0.4-2.0 \mathrm{mmol}$ of substrates for oxidation $\mathbf{I a}-\mathbf{I j}$, then $0.4-2.0 \mathrm{mmol}$ of PbO_{2} was added, and the reaction mixture was stirred for $1-$ 20 h . On completion of the reaction the mixture was poured into $50-250 \mathrm{ml}$ of chloroform. The solution in CHCl_{3} was washed with water, with saturated water solution of NaHCO_{3}, and again with water, and then it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were distilled off, and the residue was subjected to column chromatography on silica gel, eluent petroleum ether (bp $40-70^{\circ} \mathrm{C}$)chloroform. Yield of tetraketones IIIa-IIIg was determined from the weight of the fractions obtained by chromatography.

E-1,2-Bis(4-methylphenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIIa), mp $200-202^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1650(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.34 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me}), 7.16 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}\right.$, $J 8.0 \mathrm{~Hz}), 7.37 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.50 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.5 \mathrm{~Hz}), 7.81 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.0 \mathrm{~Hz}\right), 7.92 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}\right.$, $J 7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 21.82 \mathrm{q}$ $(J 126.9 \mathrm{~Hz}), 128.73$ d.d $(J 163.5,7.6 \mathrm{~Hz}), 129.52$ d.t $(J 159.8,4.9 \mathrm{~Hz}), 129.74$ d.t $(J 161.7,6.8 \mathrm{~Hz}), 129.89$ d.d $(J 161.2,6.3 \mathrm{~Hz}), 133.59 \mathrm{t}(J 7.5 \mathrm{~Hz}), 134.14$ d.t $(J 162.1$, $7.4 \mathrm{~Hz}), 136.01 \mathrm{t}(J 7.2 \mathrm{~Hz}), 145.4 \mathrm{~m}(J 6.0 \mathrm{~Hz})$, $150.42 \mathrm{~s}, 191.81 \mathrm{t}(J 3.9 \mathrm{~Hz}), 192.42 \mathrm{t}(J 5.0 \mathrm{~Hz})$. Found, \%: C 80.97; H 5.30. $M^{+} 472 . \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{4}$. Calculated, \%: C 81.34; H 5.12. M 472.17.

E-1,2-Bis(3,4-dimethylphenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIIb), mp $196-198^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1640(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum
$\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.19 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me}), 2.23 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me})$, $7.12 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 7.9 \mathrm{~Hz}\right), 7.36 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.49 \mathrm{t}$ $\left(2 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.65 \mathrm{C}\left(2 \mathrm{H}_{\text {arom }}\right), 7.68 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.9 \mathrm{~Hz}), 7.92 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right)$. Found, \%: C 81.65 ; H 5.62. M^{+}500. $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{4}$. Calculated, \%: C 81.58; H 5.64. M 500.20.

E-1,2-Bis(2,4,6-trimethylphenylcarbonyl)-1,2bis(phenylcarbonyl)ethene (IIIc), $\mathrm{mp} 257-260^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1660(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $2.08 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me}), 2.13 \mathrm{~s}(12 \mathrm{H}, 4 \mathrm{Me})$, $6.48 \mathrm{~s}\left(2 \mathrm{H}_{\text {arom }}\right), 7.40 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 7.4 \mathrm{~Hz}\right), 7.53 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.4 \mathrm{~Hz}), 7.71 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum}$ $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: 19.73 q.d $(J 127.2,4.9 \mathrm{~Hz}), 21.02$ q.t $(J 127.2,4.9 \mathrm{~Hz}), 128.25$ d.d $(J 162.2,7.0 \mathrm{~Hz}), 28.51 \mathrm{~d} . \mathrm{m}$ $(J 156.6,4.9 \mathrm{~Hz}), 128.80$ d.t $(J 160.3,6.9 \mathrm{~Hz}), 133.56$ d.t $(J 161.5,7.7 \mathrm{~Hz}), 134.86 \mathrm{~m}(J 4.0 \mathrm{~Hz}), 135.92 \mathrm{q}$ $(J 5.6 \mathrm{~Hz}), 136.51 \mathrm{t}(J 7.7 \mathrm{~Hz}), 140.56 \mathrm{q}(J 5.9 \mathrm{~Hz})$, $149.36 \mathrm{~s}, 193.03 \mathrm{t}(J 5.3 \mathrm{~Hz}), 197.77 \mathrm{C}$. Found, $\%$: C 81.53; H 6.19. M^{+}528. $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{4}$. Calculated, \%: C 81.79; H 6.10. M 528.23.

A single crystal of compound IIIc of size $0.3 \times 0.3 \times 0.08 \mathrm{~mm}$ for X-ray diffraction study (Fig. 1) was obtained by slow evaporation of the solution of the compound in acetone at room temperature within several days. Crystals $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O}_{4}$ monoclinic, at 100 K a 21.487(4), b 8.1517(15), $c 16.310(3) \AA, \beta 99.297(4)^{\circ}$, $V 2819.3(9) \AA^{3}, Z 4$, space group $C 2 / c, d_{\text {calc }} 1.245 \mathrm{~g} / \mathrm{cm}^{3}$, $\mu 0.080 \mathrm{~mm}^{-1}, 1.92 \leq \theta \leq 24.99^{\circ}, 7123$ reflectrions were measured, among them 2433 independent reflections ($R_{\text {int }} 0.0258$). The final divergence factors for all data are $R 0.0456$ and $R_{w} 0.1181$, for $I>2 \sigma(I) R 0.0391$ and $R_{w} 0.1137, S(F 2) 1.064$.

E-1,2-Bis(2,3,5,6-tetramethylphenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIId), $\mathrm{mp} 258-261^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.17 \mathrm{~s}$ $(12 \mathrm{H}, 4 \mathrm{Me}), 2.24 \mathrm{~s}(12 \mathrm{H}, 4 \mathrm{Me}), 6.48 \mathrm{~s}\left(2 \mathrm{H}_{\text {arom }}\right), 7.37 \mathrm{t}$ $\left(4 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.49 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}, J 7.5 \mathrm{~Hz}\right), 7.92 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}\right.$, $J 7.5 \mathrm{~Hz})$. Found, \%: C 81.53; H 6.61. $M^{+} 556 . \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{4}$. Calculated, \%: C 81.99; H 6.52. M 556.26.

E-1,2-Bis(4-methoxyphenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIIe), mp $150-152^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1660(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta$, ppm: $3.85 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{MeO}), 6.97 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}\right.$, $J 8.7 \mathrm{~Hz}), 7.47 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 7.4 \mathrm{~Hz}\right), 7.61 \mathrm{t}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 7.4 \mathrm{~Hz}), 7.88 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.7 \mathrm{~Hz}\right), 7.93 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}\right.$, $J 7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: 55.56 q
$(J 144.9 \mathrm{~Hz}), 114.09$ d.d (J 162.4, 4.6 Hz), 128.73 d.d $(J 162.9,7.3 \mathrm{~Hz}), 129.22 \mathrm{~d}(J 6.5 \mathrm{~Hz}), 129.80$ d.t $(J 161.6$, $6.7 \mathrm{~Hz}), 132.32$ d.d ($J 162.4,7.0 \mathrm{~Hz}), 134.14$ d.t ($J 162.1$, $7.6 \mathrm{~Hz}), 136.03 \mathrm{t}(\mathrm{J} 7.2 \mathrm{~Hz}), 150.23 \mathrm{~s}, 164.47 \mathrm{~s}, 190.48 \mathrm{t}$ ($J 3.5 \mathrm{~Hz}$), 192.66 t ($J 4.4 \mathrm{~Hz}$). Found, \%: C 75.88; H 4.90. M^{+}504. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{6}$. Calculated, \%: C 76.18; H 4.79. M 504.16.

E-1,2-Bis(4-methylphenylcarbonyl)-1,2-bis(4fluorophenylcarbonyl)ethene (IIIf), $\mathrm{mp} 246-248^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 2.36 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me})$, $7.05 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 8.4 \mathrm{~Hz}\right), 7.19 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.9 \mathrm{~Hz}\right)$, $7.81 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.9 \mathrm{~Hz}\right), 7.95$ d.d $\left(4 \mathrm{H}_{\text {arom }}, J 8.4\right.$, $5.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}:-99.00 \mathrm{~m}$. Found, \%: C 75.32; H 4.65. M^{+}508. $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{4}$. Calculated, \%: C 75.58; H 4.36. M 508.15.
$\boldsymbol{E}-1,2-B i s(4-m e t h o x y p h e n y l c a r b o n y l)-1,2-b i s-(4-$ nitrophenylcarbonyl)ethene (IIIg), $\mathrm{mp} 230-232^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta, \mathrm{ppm}: 3.83 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{MeO})$, $7.05 \mathrm{t}\left(4 \mathrm{H}_{\text {arom }}, J 8.4 \mathrm{~Hz}\right), 6.87 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.8 \mathrm{~Hz}\right)$, $7.85 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.8 \mathrm{~Hz}\right), 8.09 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.5 \mathrm{~Hz}\right)$, 8.24 d.d $\left(4 \mathrm{H}_{\text {arom }}, J 8.5 \mathrm{~Hz}\right)$. Found, \%: C 64.65; H 3.79 ; N 4.82. M^{+}594. $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10}$. Calculated, \%: C 64.65; H 3.73; N 4.71. M 594.13.

Reaction of tetraaroylethenes IIIa and IIIe with hydrazine was carried out as described in [4].

3-(4-Methoxyphenyl)-5-(4-methoxyphenyl-carbonyl)-6-phenyl-4-(phenylcarbonyl)pyridazine (IVe). Yield $14 \%, \operatorname{mp} 252-255^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta, \mathrm{ppm}: 3.80 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 3.83 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO})$, $6.85 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.7 \mathrm{~Hz}\right), 6.95 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}, J 8.6 \mathrm{~Hz}\right), 7.23-$ $7.27 \mathrm{~m}\left(5 \mathrm{H}_{\text {arom }}\right), 7.39-7.41 \mathrm{~m}\left(3 \mathrm{H}_{\text {arom }}\right), 7.55 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 8.7 \mathrm{~Hz}), 7.51-7.54 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right), 7.68 \mathrm{~d}\left(2 \mathrm{H}_{\text {arom }}\right.$, $J 8.6 \mathrm{~Hz})$. Found, \%: C 76.22; H 5.08; N 5.93. $M^{+} 500$. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$. Calculated, \%: C 76.78; H 4.83; N 5.60. M500.17.

1,5-Bis(4-methylphenyl)-4,8-bisphenyl-2,3,6,7tetraazanaphthalene (Va). Yield 35%, $\mathrm{mp}>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta$, ppm: $2.27 \mathrm{~s}(6 \mathrm{H}, 2 \mathrm{Me})$, $7.02 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.8 \mathrm{~Hz}\right), 7.22 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 7.8 \mathrm{~Hz}\right), 7.24-$ $7.27 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right), 7.43-7.45 \mathrm{~m}\left(4 \mathrm{H}_{\text {arom }}\right), 7.54-7.56 \mathrm{~m}$ $\left(4 \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 83.00; H 5.39; N 11.87. $M^{+} 464$. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4}$. Calculated, \%: C 82.73; H 5.21; N 12.06. M 464.20.

1,5-Bis(4-methoxyphenyl)-4,8-bisphenyl-2,3,6,7tetraazanaphthalene (Ve). Yield $28 \%, \mathrm{mp}>300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right], \delta$, ppm: $3.79 \mathrm{~s}(6 \mathrm{H}$, $2 \mathrm{MeO}), 6.77 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.6 \mathrm{~Hz}\right), 7.35-7.38 \mathrm{~m}\left(2 \mathrm{H}_{\text {arom }}\right)$,
$7.51 \mathrm{~d}\left(4 \mathrm{H}_{\text {arom }}, J 8.6 \mathrm{~Hz}\right), 7.54-7.56 \mathrm{~m}\left(4 \mathrm{H}_{\text {arom }}\right), 7.64-$ $7.66 \mathrm{~m}\left(4 \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 77.92; H 5.06; N 11.03 . M^{+}496. $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 77.40; H 4.87; N 11.28. M 496.19.

The study was carried out under financial support of the Committee on Science and Higer Education of the Saint-Petersburg, grant no. PD 05-1.3-81 for young Candidates of Sciences.

REFERENCES

1. Cavechenkov, P.Yu., Vasil'ev, A.V., and Rudenko, A.P., Zh. Org. Khim., 2004, vol. 40, p. 1329.
2. Filimonov, V.D., Yusubov, M.S., and Chi, K.-V., Usp. Khim., 1998, vol. 67, p. 803; Krongauz, E.S., Usp. Khim., 1977, vol. 46, p. 112; Rubin, M.B., Chem. Rev., 1975, vol. 75, p. 177.
3. Rudenko, A.P. and Vasil'ev, A.V., Zh. Org. Khim., 1995, vol. 31, p. 1502; Vasil'ev, A.V. and Rudenko, A.P., Zh. Org. Khim., 1997, vol. 33, p. 1639; Rudenko, A.P. and Vasil'-
ev, A.V., Zh. Org. Khim., 2000, vol. 36, p. 1583; Vasil'ev, A.V., Rudenko, A.P., and Fundamenskii, V.S., Zh. Org. Khim., 2001, vol. 37, p. 558.
4. Vasil'ev, A.V., Rudenko, A.P., and Grinenko, E.V., Zh. Org. Khim., 2000, vol. 36, p. 1193.
5. Vasil'ev, A.V., Fundamenskii, V.S., Cavechenkov, P.Yu., and Rudenko, A.P., Zh. Org. Khim., 2003, vol. 39, p. 909.
6. Rudenko, A.P., Aristov, S.A., and Vasil'ev, A.V., Zh. Org. Khim., 2004, vol. 40, p. 1268.
7. Vasil'ev, A.V., Walspurger, S., Pale, P., Sommer, J., Haouas, M., and Rudenko A. P., Zh. Org. Khim., 2004, vol. 40, p. 1819.
8. Rudenko, A.P., Zh. Org. Khim., 1994, vol. 30, p. 1847.
9. Rudenko, A.P. and Pragst, F., Zh. Org. Khim., 1998, vol. 34, p. 1660.
10. Rao, D.N.R. and Symons, M.C.R., J. Chem. Soc., Perkin Trans. II, 1985, p. 991; Bauld, N.L., Radicals Ion-Radicals and Triplets, New York: Wiley, 1997, p. 141.
11. Wang, J.-X., Wei, B., Hu, Y., Liua, Z., and Kang, L., J. Chem. Res., 2001, p. 146.
12. Duguay, G. and Quiniou, H., Bull. Soc. Chim., 1970, p. 1918.

[^0]: * For communication XII see [1].

