Oxidation of Aromatic Compounds: XIII.* Oxidation of Unsymmetrically Substituted 1,3-Diarylpropynones in a System CF₃CO₂H-CH₂Cl₂-PbO₂

A.V. Vasil'ev¹, A.P. Rudenko¹, S.A. Aristov¹, and G.K. Fukin²

¹St. Petersburg StateAcademy of Forestry Engineering, St. Petersburg, 194021Russia e-mail: aleksvasil@hotmail.com ²Razuvaev Institute of Organometallic Chemistry, Russian Academy of Science, Nizhnii Novgorod, Russia

Received November 12, 2004

Abstract— Oxidation of unsymmetrically sunstituted 1,3-diarylpropynones in a system trifluoroacetic aciddichloromethane-lead(IV) oxide proceeds through intermediate formation of cation radicals and occurs regio- and stereoselectively affording E-1,1,2,2-tetraaroylethenes. The highest yield of these compounds was obtained from 1,3-diarylpropynones containing electron-donor methoxy and methyl groups in the aromatic ring conjugated with the triple bond.

Alkynes are extensively used for preparation of versatile carbonyl synthons [2]. One-electron oxidation reactions of acetylene compounds open a way to new classes of synthetically valuable polycarbonyl systems [1, 3–6].

This study is carried out in extension of an investigation series on cation-radical reactions of alkynes and deals with the regio- and stereoslectivity of carbon-carbon bonds formation at oxidative dimerization of unsymmetrically substituted 1,3-diarylpropynones **Ia–Ik**. Scheme 1 shows initial 1,3-diarylpropynones **Ia–Ik** that are oxidized via an intermediate formation of cationradicals **IIa–IIk** to the final reaction products, *E*-1,1,2,2tetraaroylethenes **IIIa–IIIg** (see the table).

The structure and composition of compounds **IIIa– IIIg** were established from the data of elemental analysis, ¹H and ¹³C NMR and mass spectra, and from the X-ray diffraction study. The exact *trans*-position of aroyl groups at the C=C bond was determined by X-ray diffraction analysis by an example of compound **IIIc** (Fig. 1). The

Oxidation conditions of 1,3-diarylpropynones Ia-Ij in a system $CF_3CO_2H-CH_2Cl_2-PbO_2$ at 18–20°C, and yields of oxidation products IIIa-IIIg

Run no.	Compd.no.	Amount of reagents brought into reaction				Pagation time h	Reaction products
		I, mmol	PbO ₂ , mmol	CF ₃ CO ₂ H, ml	CH ₂ Cl ₂ , ml		(yield, %)
1	Ia	1.5	1.5	0.6	2	5	IIIa (48)
2	Ib	1.7	1.7	0.5	3	3	IIIb (52)
3	Ic	2.0	2.0	0.8	5	2	IIIc (31)
4	Id	0.6	0.6	0.2	2	2	IIId (6)
5	Ie	1.3	1.3	0.5	4	1	IIIe (62)
6	If	0.4	0.4	0.2	2	6	IIIf (38)
7	Ig	0.7	0.7	0.4	5	2	IIIg (56)
8	Ih	2.0	2.0	0.8	3	20	III a (8)
9	Ii	1.7	1.7	0.7	3	20	IIIe (8)
10	Ij	1.0	1.0	0.4	5	2	Ij (80)

* For communication XII see [1].

Scheme 1.

 $R = H, R' = 4-Me (a), 3, 4-Me_2 (b), 2, 4, 6-Me_3 (c), 2, 3, 5, 6-Me_4 (d), 4-MeO (e); 2, 3, 5, 6-Me_4C_6C(O)C \equiv C (j), 4-MeO-3-NO_2 (k); R = 4-F, R' = 4-Me (f); R = 4-NO_2, R' = 4-MeO (g); R' = H, R = 4-Me (h), 4-MeO (i).$

trans-structure of tetraaroylethenes **IIIa–IIIg** was additionally proved by their chemical reaction with hydrazine (see below).

The performed preparative oxidation of 1,3-diarylpropynones **Ia–Ij** revealed the following regular trends in the reaction. Substarates **Ia–Ic**, **Ie–Ig** containing electron-donor methoxy and methyl groups in the aromatic ring conjugated with the triple bond are cleanly converted into **IIIa–IIIc**, **IIIe–IIIg** within 1–6 h in 31–62% yields (see the table). An increased number of alkyl groups results in a lower yield of the final oxidation products, for instance, in the case of tetramethyl derivative **Id** the yield decreases to 6% (cf. runs nos. 1-6). The reason is that alkyl groups suffer oxidation by side reactions furnishing tarry compounds and thus reducing the yield of the target tetraaroylethenes.

The oxidation of diarylpropynone **I** that are isomeric having the same substituents R, (R') in o-, m-, or p-position but in different aromatic rings results in tetraaroylethenes **III** with identical structures. Thus isomers **Ia** and **Ih** afford the same tetraketone **IIIa** (runs nos. 1 and 8). Analogous-ly, the oxidation of isomeric methoxysubstituted deriva-tives **Ie** and **Ii** furnished compound **IIIe** (runs nos. 5 and 9). It should be mentioned that aryl-3-phenylpropinones **Ih** and **Ii** not activated by electron-donor substituents R' require a prolonged oxidation time (20 h) and afford oxidation products **IIIa** and **IIIe** in a small yield, 8% (runs nos. 8 and 9) at conversion of the initial compound reaching only 30%.

The formation of cation-radicals II from diarylpropynones I was registered at one-electron oxidation of compounds Ic, Ij, and Ik with lead(IV) dioxide in HSO₃F at -75° C. Substrates Ic, Ij, and Ik in HSO₃F at -75° C exist as stable forms O-protonated at the carbonyl group [7]. However the one-electron oxidation in the system HSO₃F–PbO₂ undergo nonprotonated compounds present in insignificant concentration (cf. with data in [8, 9] on the ESR studies and electrochemistry of cataionradicals of acetophenones in superacids).

The ESR spectrum of cation-radical **IIj** contains thirteen equidistant lines with a hyperfine coupling constant a_{Me}^{H} 11.5 Gs (12H). This pattern is due to the interaction

Fig. 1. Molecular structure of *E*-1,2-bis(2,4,6-trimethyl-phenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIIc).

of the unpaired electron with twelve protons of the four methyl groups (g-factor is equal to 2.0033). The character of the spectrum evidences the presence in the cation radical **II** of a singly occupied molecular orbital (SOMO) a_2 (previous HOMO of the neutral molecule [10]). Therewith the methyl substituents are considerably involved in the distribution of the spin-positive density. As a result the oxidation of compound **I** did not furnish the corresponding tetraaroylethene. In the reaction the equimolar amount of PbO₂ was totally consumed, and beside a small quantity of oily oligomeric products initial compound **I** was recovered in an 80% yield (run no. 10). The reaction proceeded through the oxidation of "active" methyl groups not involving the acetylene moieties of the molecule.

ESR spectra of cation-radicals **IIc** and **IIk** are shown on Fig. 2. The ESR spectrum of cation-radical **IIc** is a quartet of nonets with constants $a^{\rm H}_{i-{\rm Me}}$ 12 (3H) and $a^{\rm H}_{O-{\rm Me}} = a^{\rm H}_{m-{\rm arom}}$ 2.4 Gs (8H) (Fig. 2a) and corresponds to SOMO b_1 . The spin-positive density in the cation-radical **IIc** is essentially delocalized onto the *para*-methyl group (the principal quartet splitting in the spectrum) and on the triple bond C=C governing the reactivity of the latter. Actually, the oxidation of compound **Ic** results in formation of tetraketone **IIIc** in a 31% yield (run no.3) in contrast to the above mentioned substrate **Ij**.

The comparison of the ESR spectrum of cation-radical **IIc** with ESR spectra of cation-radicals of the structurally related mesityene derivatives containing an electron-acceptor group in the aromatic ring [8] reveales the transformation of SOMO a_2 (characteristic of the latter) into SOMO b_1 for the species **IIc**. In cation-radical **IIc** the involvement of the acetylene bond into the delocalization of the spin-positive density becomes favorable even disregarding the electron-acceptor character of the C=CC(O)Ph group.

ESR spectrum of cation-radical **IIk** is a quintet (intensity ratio of the lines equals to 1:4:6:4:1) with a hyperfine coupling constant $a_{MeO}^{H} = a_{m-arom}^{H}$ 4.5 Gs (4H) (*g*-factor 2.0037) and also corresponds to SOMO b_1 for this species (Fig. 2b).

The reaction of tetraaroylethenes **IIIa** and **IIIe** with hydrazine gave rise to heterocyclic derivatives of pyridazine **IV** and 2,3,6,7-tetraazanaphthalene **Va** and **Ve** series (Scheme 2). The synthesis of pyridazine **IV** is possible only from *trans*-compound **IIIe**. In the case of a *cis*-isomer *Z*-**IIIe** presumably should have formed two different isomeric pyridazines that was not the case. Therefore the data on the structure of the products obtained in reaction of compounds **IIIa** and **IIIe** with

Fig. 2. ESR spectra of cation-radicals **IIc** (*a*) and **IIk** (*b*) registered at oxidation of compounds **Ic** and **Ik** in the system HSO_3F-PbO_2 at $-75^{\circ}C$.

hydrazine additionally confirm the *trans*-configuration of tetraketones **IIIa–IIIg**.

EXPERIMENTAL

¹H, ¹³C, and ¹⁹F NMR spectra were registered on spectrometer Bruker AM-500 (operating frequencies

Scheme 1.

500, 125.76, and 470.7 MHz respectively) from solutions in CDCl₃ and (CD₃)₂CO. As internal references were used the residual signals of $CHCl_3$ (δ 7.25 ppm) and $(CD_3)_2CO$ (δ 2.05 ppm) in the ¹H NMR spectra, signal of CDCl₃ solvent (δ 77.0 ppm) in the ¹³C NMR spectra, and signal of CFCl₃ (δ 0.0 ppm) in the ¹⁹F NMR spectrum. IR spectra were recorded on spectrophotometer Specord 75IR from solutions in CHCl₃. Molecular weights were determined by mass spectrometry on MKh-1321 instrument at ionizing voltage 70 V at direct admission of samples into the ion source heated to 100-120°C. ESR spectra of cation-radicals were measured on spectrometer Varian E-109; the procedure of cationradicals generation and registering their ESR spectra in the system HSO₃F–PbO₂ was described in detail in [8]; the g-factor value was estimated with respect to diphenylpicrylhydrazyl. The X-ray diffraction study of compound IIIc was performed on a diffractometer Smart Apex.

Initial 1,3-diarylpropynones **Ia–Ij** were prepared from the corresponding arylacetylenes and aroyl chlorides by procedure [4]. The properties of compounds **Ia**, **Ic**, **Ie**, **Ij**, and **Ik** were published in [7].

3-(3,4-Dimethylphenyl)-1-phenylpropynone (Ib). Yield 30%, mp 77–79°C. IR spectrum, v, cm⁻¹:1630, 1635 (C=O), 2200 (C=C). ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 2.31 s (3H, Me), 2.33 s (3H, Me), 7.27 d (1H_{arom}, *J* 7.7 Hz), 7.48–7.74 m (5H_{arom}), 8.22–8.24 m (2H_{arom}). Found, %: C 87.24; H 5.93. *M*⁺ 234. C₁₇H₁₄O. Calculated, %: C 87.15; H 6.02. *M* 234.10.

3-(2,3,5,6-Tetramethylphenyl)-1-phenylpropynone (Id). Yield 35%, mp 108–110°C. IR spectrum, v, cm⁻¹:1620 (C=O), 2190 (C=C). ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 2.24 s (6H, 2Me), 2.47 s (6H, 2Me), 7.10 s (1H_{arom}), 7.62 t (2H_{arom}, *J* 7.5 Hz), 7.73 t (1H_{arom}, *J* 7.5 Hz), 8.24 d (2H_{arom}, *J* 7.5 Hz). Found, %: C 87.05; H 6.98. *M*⁺ 262. C₁₉H₁₈O. Calculated, %: C 86.99; H 6.92. *M* 262.14.

3-(4-Methylphenyl)-1-(4-fluorophenyl)propynone (If). Yield 46%, mp 95–97°C. IR spectrum, ν, cm⁻¹: 1625 (C=O), 2195 (C=C). ¹H NMR spectrum [(CD₃)₂CO], δ, ppm: 2.41 s (3H, Me), 7.34–7.38 m (4H_{arom}), 7.68 d (2H_{arom}, *J* 7.9 Hz), 8.28–8.32 m (2H_{arom}). Found, %: C 80.41; H 4.79. *M*⁺ 238. C₁₆H₁₁FO. Calculated, %: C 80.66; H 4.65. *M* 238.08.

3-(4-Methoxyphenyl)-1-(4-nitrophenyl)propynone (Ig). Yield 34%, mp 196–198°C. IR spectrum, v, cm⁻¹:1650 (C=O), 2190 (C=C). ¹H NMR spectrum (CDCl₃), δ , ppm: 3.87 s (3H, OMe), 6.96 d $(2H_{arom}, J 8.6 Hz), 7.66 d (2H_{arom}, J 8.6 Hz), 8.36 s (4H_{arom}).$ Found, %: C 67.93; H 4.11; N 5.08. *M*⁺ 281. C₁₆H₁₁NO₄. Calculated, %: C 68.32; H 3.94; N 4.98. *M* 281.07.

1-(4-Methylphenyl)-3-phenylpropynone (Ih). Yield 56%, mp 68–69°C (publ.: mp 67–68°C [11]). IR spectrum, v, cm⁻¹:1625 (C=O), 2195 (C≡C). ¹H NMR spectrum [(CD₃)₂CO], δ, ppm: 2.44 s (3H, Me), 7.41 d (2H_{arom}, *J* 8.0 Hz), 7.50–7.60 m (3H_{arom}), 7.76–7.78 m (2H_{arom}), 8.13 d (2H_{arom}, *J* 8.0 Hz).

1-(4-Methoxyphenyl)-3-phenylpropynone (Ii). Yield 58%, mp 97–99°C (publ.: mp 98–99 [11], 100°C [12]). IR spectrum, ν, cm⁻¹:1610 (C=O), 2200 (C=C). ¹H NMR spectrum [(CD₃)₂CO], δ, ppm: 3.93 s (3H, OMε), 7.11 d (2H_{arom}, *J* 8.9 Hz), 7.50–7.60 m (3H_{arom}), 7.75–7.86 m (2H_{arom}), 8.21 d (2H_{arom}, *J* 8.9 Hz).

Oxidation of 1,3-diarylpropynones Ia-Ij into 1,1,2,2-tetraaroylethenes IIIa-IIIg. To a solution of 0.2–0.8 ml of CF₃CO₂H in 2–5 ml of CH₂Cl₂ was added at 18-20°C while vigorous stirring 0.4-2.0 mmol of substrates for oxidation Ia-Ij, then 0.4-2.0 mmol of PbO₂ was added, and the reaction mixture was stirred for 1-20 h. On completion of the reaction the mixture was poured into 50-250 ml of chloroform. The solution in CHCl₃ was washed with water, with saturated water solution of NaHCO₃, and again with water, and then it was dried over Na₂SO₄. The solvents were distilled off, and the residue was subjected to column chromatography on silica gel, eluent petroleum ether (bp 40-70°C)chloroform. Yield of tetraketones IIIa-IIIg was determined from the weight of the fractions obtained by chromatography.

E-1,2-Bis(4-methylphenylcarbonyl)-1,2-bis-(phenylcarbonyl)ethene (IIIa), mp 200–202°C. IR spectrum, v, cm⁻¹:1650 (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.34 s (6H, 2Me), 7.16 d (4H_{arom}, *J* 8.0 Hz), 7.37 t (4H_{arom}, *J* 7.5 Hz), 7.50 t (2H_{arom}, *J* 7.5 Hz), 7.81 d (4H_{arom}, *J* 8.0 Hz), 7.92 d (4H_{arom}, *J* 7.5 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 21.82 q (*J* 126.9 Hz), 128.73 d.d (*J* 163.5, 7.6 Hz), 129.52 d.t (*J* 159.8, 4.9 Hz), 129.74 d.t (*J* 161.7, 6.8 Hz), 129.89 d.d (*J* 161.2, 6.3 Hz), 133.59 t (*J* 7.5 Hz), 134.14 d.t (*J* 162.1, 7.4 Hz), 136.01 t (*J* 7.2 Hz), 145.4 m (*J* 6.0 Hz), 150.42 s, 191.81 t (*J* 3.9 Hz), 192.42 t (*J* 5.0 Hz). Found, %: C 80.97; H 5.30. *M*+ 472. C₃₂H₂₄O₄. Calculated, %: C 81.34; H 5.12. *M* 472.17.

E-1,2-Bis(3,4-dimethylphenylcarbonyl)-1,2-bis-(phenylcarbonyl)ethene (IIIb), mp 196–198°C. IR spectrum, v, cm⁻¹:1640 (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.19 s (6H, 2Me), 2.23 s (6H, 2Me), 7.12 d (2H_{arom}, *J* 7.9 Hz), 7.36 t (4H_{arom}, *J* 7.5 Hz), 7.49 t (2H_{arom}, *J* 7.5 Hz), 7.65 C (2H_{arom}), 7.68 d (2H_{arom}, *J* 7.9 Hz), 7.92 d (4H_{arom}, *J* 7.5 Hz). Found, %: C 81.65; H 5.62. *M*⁺ 500. C₃₄H₂₈O₄. Calculated, %: C 81.58; H 5.64. *M* 500.20.

E-1,2-Bis(2,4,6-trimethylphenylcarbonyl)-1,2bis(phenylcarbonyl)ethene (IIIc), mp 257–260°C. IR spectrum, v, cm⁻¹:1660 (C=O). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.08 s (6H, 2Me), 2.13 s (12H, 4Me), 6.48 s (2H_{arom}), 7.40 t (4H_{arom}, *J* 7.4 Hz), 7.53 t (2H_{arom}, *J* 7.4 Hz), 7.71 d (4H_{arom}, *J* 7.4 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 19.73 q.d (*J* 127.2, 4.9 Hz), 21.02 q.t (*J* 127.2, 4.9 Hz), 128.25 d.d (*J* 162.2, 7.0 Hz), 28.51 d.m (*J* 156.6, 4.9 Hz), 128.80 d.t (*J* 160.3, 6.9 Hz), 133.56 d.t (*J* 161.5, 7.7 Hz), 134.86 m (*J* 4.0 Hz), 135.92 q (*J* 5.6 Hz), 136.51 t (*J* 7.7 Hz), 140.56 q (*J* 5.9 Hz), 149.36 s, 193.03 t (*J* 5.3 Hz), 197.77 C. Found, %: C 81.53; H 6.19. *M*⁺ 528. C₃₆H₃₂O₄. Calculated, %: C 81.79; H 6.10. *M* 528.23.

A single crystal of compound **IIIc** of size $0.3 \times 0.3 \times 0.08$ mm for X-ray diffraction study (Fig. 1) was obtained by slow evaporation of the solution of the compound in acetone at room temperature within several days. Crystals $C_{36}H_{32}O_4$ monoclinic, at 100 K *a* 21.487(4), *b* 8.1517(15), *c* 16.310(3) Å, β 99.297(4)°, V2819.3(9) Å³, Z4, space group C2/c, d_{calc} 1.245 g/cm³, μ 0.080 mm⁻¹, 1.92 $\leq \theta \leq 24.99^\circ$, 7123 reflectrions were measured, among them 2433 independent reflections (R_{int} 0.0258). The final divergence factors for all data are *R* 0.0456 and R_w 0.1181, for $I > 2\sigma(I)$ *R* 0.0391 and R_w 0.1137, S(F2) 1.064.

E-1,2-Bis(2,3,5,6-tetramethylphenylcarbonyl)-1,2-bis(phenylcarbonyl)ethene (IIId), mp 258–261°C (decomp.). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.17 s (12H, 4Me), 2.24 s (12H, 4Me), 6.48 s (2H_{arom}), 7.37 t (4H_{arom}, *J*7.5 Hz), 7.49 t (2H_{arom}, *J*7.5 Hz), 7.92 d (4H_{arom}, *J*7.5 Hz). Found, %: C 81.53; H 6.61. *M*⁺ 556. C₃₈H₃₆O₄. Calculated, %: C 81.99; H 6.52. *M* 556.26.

E-1,2-Bis(4-methoxyphenylcarbonyl)-1,2-bis-(phenylcarbonyl)ethene (IIIe), mp 150–152°C. IR spectrum, v, cm⁻¹:1660 (C=O). ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 3.85 s (6H, 2MeO), 6.97 d (4H_{arom}, *J* 8.7 Hz), 7.47 t (4H_{arom}, *J* 7.4 Hz), 7.61 t (2H_{arom}, *J* 7.4 Hz), 7.88 d (4H_{arom}, *J* 8.7 Hz), 7.93 d (4H_{arom}, *J* 7.4 Hz). ¹³C NMR spectrum (CDCl₃), δ , ppm: 55.56 q $(J\ 144.9\ Hz),\ 114.09\ d.d\ (J\ 162.4,\ 4.6\ Hz),\ 128.73\ d.d\ (J\ 162.9,\ 7.3\ Hz),\ 129.22\ d\ (J\ 6.5\ Hz),\ 129.80\ d.t\ (J\ 161.6,\ 6.7\ Hz),\ 132.32\ d.d\ (J\ 162.4,\ 7.0\ Hz),\ 134.14\ d.t\ (J\ 162.1,\ 7.6\ Hz),\ 136.03\ t\ (J\ 7.2\ Hz),\ 150.23\ s,\ 164.47\ s,\ 190.48\ t\ (J\ 3.5\ Hz),\ 192.66\ t\ (J\ 4.4\ Hz).\ Found,\ \%:\ C\ 75.88;\ H\ 4.90.\ M^+\ 504.\ C_{32}H_{24}O_6.\ Calculated,\ \%:\ C\ 76.18;\ H\ 4.79.\ M\ 504.16.$

E-1,2-Bis(4-methylphenylcarbonyl)-1,2-bis(4-fluorophenylcarbonyl)ethene (IIIf), mp 246–248°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 2.36 s (6H, 2Me), 7.05 t (4H_{arom}, *J* 8.4 Hz), 7.19 d (4H_{arom}, *J* 7.9 Hz), 7.81 d (4H_{arom}, *J* 7.9 Hz), 7.95 d.d (4H_{arom}, *J* 8.4, 5.3 Hz). ¹⁹F NMR spectrum (CDCl₃), δ , ppm: –99.00 m. Found, %: C 75.32; H 4.65. *M*⁺ 508. C₃₂H₂₂F₂O₄. Calculated, %: C 75.58; H 4.36. *M* 508.15.

E-1,2-Bis(4-methoxyphenylcarbonyl)-1,2-bis-(4nitrophenylcarbonyl)ethene (IIIg), mp 230–232°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.83 s (6H, 2MeO), 7.05 t (4H_{arom}, *J* 8.4 Hz), 6.87 d (4H_{arom}, *J* 8.8 Hz), 7.85 d (4H_{arom}, *J* 8.8 Hz), 8.09 d (4H_{arom}, *J* 8.5 Hz), 8.24 d.d (4H_{arom}, *J* 8.5 Hz). Found, %: C 64.65; H 3.79; N 4.82. *M*⁺ 594. C₃₃H₂₂N₂O₁₀. Calculated, %: C 64.65; H 3.73; N 4.71. *M* 594.13.

Reaction of tetraaroylethenes IIIa and IIIe with hydrazine was carried out as described in [4].

3-(4-Methoxyphenyl)-5-(4-methoxyphenylcarbonyl)-6-phenyl-4-(phenylcarbonyl)pyridazine (**IVe).** Yield 14%, mp 252–255°C. ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 3.80 s (3H, MeO), 3.83 s (3H, MeO), 6.85 d (2H_{arom}, *J* 8.7 Hz), 6.95 d (2H_{arom}, *J* 8.6 Hz), 7.23– 7.27 m (5H_{arom}), 7.39–7.41 m (3H_{arom}), 7.55 d (2H_{arom}, *J* 8.7 Hz), 7.51–7.54 m (2H_{arom}), 7.68 d (2H_{arom}, *J* 8.6 Hz). Found, %: C 76.22; H 5.08; N 5.93. *M*⁺ 500. C₃₂H₂₄N₂O₄. Calculated, %: C 76.78; H 4.83; N 5.60. *M* 500.17.

1,5-Bis(4-methylphenyl)-4,8-bisphenyl-2,3,6,7tetraazanaphthalene (Va). Yield 35%, mp >300°C. ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 2.27 s (6H, 2Me), 7.02 d (4H_{arom}, *J* 7.8 Hz), 7.22 d (4H_{arom}, *J* 7.8 Hz), 7.24–7.27 m (2H_{arom}), 7.43–7.45 m (4H_{arom}), 7.54–7.56 m (4H_{arom}). Found, %: C 83.00; H 5.39; N 11.87. *M*⁺ 464. C₃₂H₂₄N₄. Calculated, %: C 82.73; H 5.21; N 12.06. *M* 464.20.

1,5-Bis(4-methoxyphenyl)-4,8-bisphenyl-2,3,6,7tetraazanaphthalene (Ve). Yield 28%, mp >300°C. ¹H NMR spectrum [(CD₃)₂CO], δ, ppm: 3.79 s (6H, 2MeO), 6.77 d (4H_{arom}, *J* 8.6 Hz), 7.35–7.38 m (2H_{arom}), 7.51 d (4H_{arom}, *J* 8.6 Hz), 7.54–7.56 m (4H_{arom}), 7.64– 7.66 m (4H_{arom}). Found, %: C 77.92; H 5.06; N 11.03. *M*⁺ 496. C₃₂H₂₄N₄O₂. Calculated, %: C 77.40; H 4.87; N 11.28. *M* 496.19.

The study was carried out under financial support of the Committee on Science and Higer Education of the Saint-Petersburg, grant no. PD 05-1.3-81 for young Candidates of Sciences.

REFERENCES

- 1. Cavechenkov, P.Yu., Vasil'ev, A.V., and Rudenko, A.P., *Zh. Org. Khim.*, 2004, vol. 40, p. 1329.
- Filimonov, V.D., Yusubov, M.S., and Chi, K.-V., Usp. Khim., 1998, vol. 67, p. 803; Krongauz, E.S., Usp. Khim., 1977, vol. 46, p. 112; Rubin, M.B., Chem. Rev., 1975, vol. 75, p. 177.
- Rudenko, A.P. and Vasil'ev, A.V., *Zh. Org. Khim.*, 1995, vol. 31, p. 1502; Vasil'ev, A.V. and Rudenko, A.P., *Zh. Org. Khim.*, 1997, vol. 33, p. 1639; Rudenko, A.P. and Vasil'-

ev, A.V., *Zh. Org. Khim.*, 2000, vol. 36, p. 1583; Vasil'ev, A.V., Rudenko, A.P., and Fundamenskii, V.S., *Zh. Org. Khim.*, 2001, vol. 37, p. 558.

- 4. Vasil'ev, A.V., Rudenko, A.P., and Grinenko, E.V., *Zh. Org. Khim.*, 2000, vol. 36, p. 1193.
- Vasil'ev, A.V., Fundamenskii, V.S., Cavechenkov, P.Yu., and Rudenko, A.P., *Zh. Org. Khim.*, 2003, vol. 39, p. 909.
- 6. Rudenko, A.P., Aristov, S.A., and Vasil'ev, A.V., *Zh. Org. Khim.*, 2004, vol. 40, p. 1268.
- 7. Vasil'ev, A.V., Walspurger, S., Pale, P., Sommer, J., Haouas, M., and Rudenko A. P., *Zh. Org. Khim.*, 2004, vol. 40, p. 1819.
- 8. Rudenko, A.P., Zh. Org. Khim., 1994, vol. 30, p. 1847.
- Rudenko, A.P. and Pragst, F., Zh. Org. Khim., 1998, vol. 34, p. 1660.
- Rao, D.N.R. and Symons, M.C.R., J. Chem. Soc., Perkin Trans. II, 1985, p. 991; Bauld, N.L., Radicals Ion-Radicals and Triplets, New York: Wiley, 1997, p. 141.
- 11. Wang, J.-X., Wei, B., Hu, Y., Liua, Z., and Kang, L., *J. Chem. Res.*, 2001, p. 146.
- 12. Duguay, G. and Quiniou, H., Bull. Soc. Chim., 1970, p. 1918.

1174